• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Institute Logo WW8
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften

Institute Logo WW8

Navigation Navigation close
  • Teaching
  • Institute Seminar
  • Publications
    • Dissertations
    Portal Publications
  • Research
  • Institute
    • Directions
    • Staff
      • Alumni
    Portal Institute
  • Intranet

Institute of Materials Simulation

Website of the Institute of Materials Simulation

In page navigation: Institute Seminar
  • Summer Term 2025
  • Winter Term 2024/2025
  • Summer Term 2024
  • Winter Term 2023/2024
  • Summer Term 2023
  • Winter Term 2022/23
  • Summer Term 2022
  • Winter Term 2021/22
    • Network modelling: examples from computational neuroscience, biomaterial fracture and polymer mechanics
    • Spectral Signatures of Fault Tolerant Neural Architectures
    • Automatic design of mechanical metamaterials
    • Disordered mechanical metamaterials
  • Summer Term 2021
  • Winter Term 2020/21
  • Summer Term 2020
  • Winter Term 2019/20
  • Summer Term 2019
  • Winter Term 2018/19
  • Summer Term 2018
  • Winter Term 2017/18
  • Summer Term 2017
  • Winter Term 2016/17
  • Summer Term 2016
  • Winter Term 2015/16
  • Summer Term 2015
  • Winter Term 2014/15
  • Summer Term 2014
  • Winter Term 2013/14
  • Summer Term 2013
  • Winter Term 2012/13

Automatic design of mechanical metamaterials

Location

Seminar room

Room: Room 2.018-2
Dr.-Mack-Str. 77
90762 Fürth

Opening hours

Events and Lectures

Participate online

  • Zoom

Prof. Stefano Zapperi

Department of Physics and Center for Complexity & Biosystems, University of Milan, Itali

22. February 2022, 17.00
WW8, Zoom, Fürth

Prof. Stefano Zapperi

Prof. Stefano Zapperi

Gastwissenschaftler

 

Mechanical metamaterial actuators achieve pre-determined input–outputoperations exploiting architectural features encoded within a single 3D printed element, thus removing the need for assembling different structuralcomponents. Despite the rapid progress in the field, there is still a need forefficient strategies to optimize metamaterial design for a variety of functions.We present a computational method for the automatic design of mechanicalmetamaterial actuators that combines a reinforced Monte Carlo method with discrete element simulations. 3D printing of selected mechanical metamaterial actuators shows that the machine-generated structures canreach high efficiency, exceeding human-designed structures. We also show that it is possible to design efficient actuators by training a deep neural network which is then able to predict the efficiency from the image of a structure and to identify its functional regions. The elementary actuators devised here can be combined to produce metamaterial machines of arbitrary complexity for countless engineering applications.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Institute of Materials Simulation

Dr.-Mack-Str. 77
90762 Fürth
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • RSS Feed
Up